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-An approach to fighting diseases using synthetic single-stranded DNA-like molecules targeting RNA
-ASOs usually consist of 15-30 nucleotides complimentary to target RNAs

Antisense oligonucleotide (ASO) therapy
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DUX4 is toxic for cells

• DUX4 in muscle cells cause 
§ Muscle inflammation

§ Muscle wasting

§ Disrupted muscle development 

• Only a trace amount of DUX4 is needed to cause FSHD
• Expression of DUX4 in 1 out of 200–2000 cells can lead to FSHD

DUX4

Inflammation ↑ ↑

Atrophy ↑ ↑

Muscle development ↓ ↓



Using gapmers for gene knockdown

MOE/LNA DNA MOE/LNA+
gapmer DUX4 mRNA

target
binding

target
degradation

RNase H

• Carefully designed gapmers 
targeting DUX4

• Gapmer hybridizes to the DUX4 
mRNA (target binding)

• DUX4 mRNA:gapmer complex 
attracts RNase H

• RHase H degrades the 
mRNA:gapmer complex (target 
degradation)



Gapmer antisense technology: an unprecedented 
strategy to knock down DUX4 expression

DUX4 transcript knockdown with antisense 2’-O-methoxyethyl gapmers for the 
treatment of facioscapulohumeral muscular dystrophy
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Our research hypothesis

FSHD patient-derived muscle cells

FSHD mouse model

DUX4?

We hypothesize that the use of our LNA and 2’-MOE gapmers will result 
in highly effective DUX4 knockdown in FSHD-patient derived cell models 

and in a mouse of FSHD



LNA/2’-MOE gapmer treatment significantly 
improves muscle fusion in vitro
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Figure 3. In vitro muscle cell phenotypes after 2’-MOE gapmer treatment. (A) 

Representative immunocytochemistry images of healthy immortalized control myotubes, and 

non-treated (NT), mock 2’-MOE gapmer-treated (M), and DUX4-specific MOE gapmer-treated 

(MOE1, MOE2, MOE3) immortalized FSHD patient-derived myotubes stained for nuclei (blue) 

and desmin (green). In this case, patient-derived myotubes were transfected with 10 nM of the 

various 2’-MOE gapmers at 4 days post-differentiation and then stained 3 days later. Scale bar: 

100 μm. (B) Myogenic fusion index quantification for the various treatment groups. (C) 

Frequency distribution of myotube diameters across the different treatment groups. n=3 

independent experiments; 382 nuclei and 26 myotubes on average for each replicate, per 

condition were counted for quantification of MFI and muscle cell diameters, respectively. (D) 

Individual myotube diameters from (C) were plotted. (E) Early and late apoptotic cell 

populations in immortalized FSHD patient-derived myotubes treated with 10 nM of the various 

Fig.	3	
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Myogenic fusion index (MFI) = 
# nuclei in myotubes / # total nuclei

*p < 0.05, **p < 0.01 

Lim et al. PNAS 2020
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Testing gapmers in an FSHD mouse model

2-3 months old

FLExDUX4 mice

LNA4/MOE3
20 µg

3x i.m.
every other day



Our LNA/2’-MOE gapmers reduce DUX 4 expression in vivo 
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FACIOSCAPULOHUMERAL	DYSTROPHY	(FSHD)

• Autosomal	dominant

• Prevalence:	1/8000	– 1/22000;	third	most	
common	muscular	dystrophy	worldwide1

• Muscle	weakness	begins	in	upper	body	then	
spreads	down	with	age1

Source:	http://www.umassmed.edu/wellstone/aboutfshd/overview/

Winged	scapula,
a	common	FSHD	phenotype

• Onset:	birth	(severe)	à adulthood1,2

• No	treatment	exists

FSHD	IS	CAUSED	BY	DUX4 MIS-EXPRESSION
• DUX4 is	expressed	in	FSHD	muscle;	normally	turned	off	in	development3

healthy	muscle ON OFF

??
?

embryo adult

ON ONFSHD	muscle

• Part	of	DUX4 is	in	a	tandem	array	repeat	(D4Z4)1,4,5

ORF
poly(A) signal

…… D4Z4

1 2 3 4q35	(A	allele)DUX4 gene

normally	hypermethylated

• Chromatin	state	dysregulation	of	the	array	leads	to	DUX4 mis-expression1

hypermethylation

healthy:	11-150	repeats

≤10	repeats

11-150	repeats

hypomethylation

hypomethylation

contraction	
(~95%	cases)

methylase
mutation
(~5%	cases)

DUX4 ON

DUX4 ON

• DUX4 codes	for	a	transcription	factor	– how	it	causes	FSHD	is	unclear

GENE	KNOCKDOWN	BY	ANTISENSE	GAPMERS

OBJECTIVES	AND	RESEARCH	HYPOTHESES

RESULTS

RESULTS	(continued)

RNA LNA 2’-MOE

• Knockdown	of	DUX4 can	be	a	therapy	for	FSHD
• Locked	nucleic	acid	(LNA),	2’-O-(2-methoxyethyl)	(2’-MOE)	gapmers6,7 used

MOE/LNA DNA MOE/LNA +
gapmer mRNA

target
binding

target
degradation

RNase	H

• Test	in	vitro and	in	vivo efficacy	of	LNA	and	2’-MOE	gapmers against	DUX4

DUX4 gapmers +
immortalized	FSHD	patient-derived	myotubes

(Wellstone	Program,	Univ.	of	Massachusetts)

FLExDUX4	FSHD	mouse	model8
DUX4?

• We	hypothesize	that	the	use	of	our	LNA	and	2’-MOE	gapmers will	result	in	highly	
effective	DUX4 knockdown	in	vitro and	in	vivo

• Gapmers were	designed	across	various	DUX4 mRNA	regions

1,4-7
2

1 2 3
3

1 2
3

Figure 1. Gapmer target locations in DUX4. LNA (red) and 2’-MOE (green) gapmers are shown with their
approximate target sites along the DUX4 mRNA. The ORF is in orange, with the poly(A) signal marked by a
vertical yellow line.

• LNA	and	2’-MOE	gapmers significantly	knock	down	DUX4 (~100%)	in	vitro
A B C

Figure 2. LNA and 2’-MOE gapmer screening. (A) Culture scheme for gapmer screen. Immortalized FSHD patient-derived
and healthy control muscle cells (biceps) were used. qPCR DUX4 expression results are shown for (B) LNA or (C) 2’-MOE
treatment. qPCR analysis of downstream DUX4 targets after (D) LNA or (E) 2’-MOE treatment. Expression normalized to
GAPDH. Numbers: LNA/2’-MOE gapmer #, NT: non-treated, M: mock-treated, U: unaffected/healthy control. n = 3, error:
SD. *p≤0.05, **p≤0.01, ***p≤0.005, one-way ANOVA, Dunnett’s vs NT (except D, vs M).

D E

• Gapmer activity	is	dose-dependent	and	persists	at	a	lower	dose

A BFigure 3. Gapmer activity at various doses. Cells
were grown as in Fig. 2a, with two additional
doses: 10 nM, 1 nM. qPCR DUX4 expression is
shown after (A) LNA or (B) 2’-MOE treatment,
GAPDH-normalized. NT: non-treated. n = 3, error:
SD. **p≤0.01, ***p≤0.005, one-way ANOVA,
Dunnett’s vs NT. δp≤0.05, δδp≤0.01, one-way
ANOVA, Tukey’s test.

• RNA-seq confirms	efficacy	of	LNA4	treatment:	74/86	significantly	up-regulated	
FSHD	signature	genes	had	decreased	expression	post-treatment

• Local	LNA	gapmer treatment	significantly	knocks	down	DUX4 in	vivo

Figure 5. LNA gapmer treatment effect on muscle fusion and
apoptosis. (A, B) Cells at 4 days post-differentiation were
transfected with 10 nM LNA gapmers, and then immunostained 3
days later. (A) Representative images of cells stained with
antibodies against desmin (green). Nuclei are in blue. (B)
Myogenic fusion index (MFI) quantification from (A). Scale: 100
µm. n = 3, error: SEM. **p≤0.01, one-way ANOVA, Dunnett’s vs
NT; ***p≤0.005, unpaired one-tailed t-test. (C) An annexin V/PI
flow cytometry assay was used to quantify apoptosis in non-
treated (NT), LNA-treated, and mock-treated (M) FSHD myotubes.
Cells were grown and treated as in Fig. 2a. Unaffected controls (U)
are included. n = 3, error: SEM. *p≤0.05, unpaired one-tailed t-
test.

CONCLUSIONS	AND	FUTURE	DIRECTIONS
• Our	LNA	and	2’-MOE	gapmers significantly	reduced	DUX4 expression	in	vitro,	in	a	

dose-dependent	manner.	Muscle	fusion	was	also	significantly	improved	post-
treatment.	Furthermore,	two	selected	LNA	gapmers were	able	to	significantly	
knock	down	DUX4 expression	in	vivo.

• Future	steps:	assess	functional	efficacy	and	safety	of	2’-MOE	gapmers in	vitro
and	in	vivo,	determine	systemic	in	vivo efficacy	of	the	best	gapmer/s.		
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• LNAs	1	and	4	were	chosen	for	in	vivo testing	in	FLExDUX4	mice,	which	have	leaky	
DUX4 expression	even	without	DUX4 transgene	induction	by	Cre

Figure 4. RNA-seq analysis of LNA4 efficacy. Total RNA
was collected from cells cultured and treated with
LNA4 as in Fig. 2a and used for RNA-seq. (A)
Comparison of our data set with Rickard et al. (2015)9
yielded 91 FSHD signature genes. (B) Volcano plots of
RNA-seq data from non-treated and LNA4-treated
FSHD cells, with healthy control as reference (red: up-
regulated, blue: down-regulated in FSHD). (C) Heat
map visualization of RNA-seq data in (B). n = 3.

• LNA	treatment	significantly	improves	muscle	fusion,	not	so	much	apoptosis
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Figure 6. In vivo LNA gapmer activity. Adult wild-type (WT) and FLExDUX4 (DUX4)
mice were injected thrice intramuscularly into the tibialis anterior (TA) every other
day with either PBS, LNA4, or a scrambled gapmer control (Scrbl). For gapmer-
treated mice, the contralateral TA was injected with PBS. Muscles were harvested
24 h post-injection and used for qPCR analysis of DUX4 expression. Solid and
hashed colors indicate leg pairs. L: left TA, R: right TA. n = 5 each, error: SEM.
*p≤0.05, paired t-test.

FLExDUX4/+ mice
3 x i.m. of  30 µg LNA 4 / 20 µg MOE 3 into TA
(every other day)
Collected 24 hours after the last injection
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mentioned, and also from its favorable performance in the off-target effect analysis. For each 

mouse, MOE3 was injected in one of the legs while vehicle (phosphate-buffered saline or PBS) 

was injected in the other. qPCR was performed to determine DUX4 expression levels a day after 

the third injection. Our results showed that injection of MOE3 into the TA of FLExDUX4 mice 

significantly reduced DUX4 mRNA expression compared to the contralateral limb that only 

received a PBS injection (n=5, p<0.05) (Fig. 5). Similar injection of a scrambled 2’-MOE 

gapmer control did not have an effect on DUX4 mRNA expression in FLExDUX4 mice; MOE3 

significantly knocked down DUX4 transcript levels compared to the scrambled control (n=5 

MOE3-treated mice, n=3 scrambled gapmer-treated mice, p<0.05). 

 

 

 

 

 

 

 

Figure 5. In vivo efficacy of MOE3 gapmer treatment in FLExDUX4 mice. Intramuscular 

injections of 20 µg MOE3 to the TA muscles (one leg with MOE3 and the contralateral leg with 

PBS) every other day for a total of 3 injections showed knockdown of DUX4 mRNA by qPCR 

one day after the last injection. No knockdown was observed when a 2’-MOE gapmer control 

with a scrambled sequence was injected instead. Bars with similar patterns (block or hashed) 

indicate leg pairs. Error bars: S.E.M. n=5 for MOE3/PBS mice and n=3 for scrambled 2’-

MOE/PBS mice. *p<0.05, paired, two-tailed t-test. δ p<0.05, unpaired, two-tailed t-test. 
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Scrbl: gapmer control with scrambled sequences
n=5 each

Lim et al. PNAS 2020 Lim et al. Mol Ther. 2021

Lim et al. PNAS 2020

7-week old FLExDUX4/+ mice,
1x i.m. of  30 mg Fluorescein-LNA 4 into TA
Collected 24 hours after the injection

Away from injection site

LNA gapmer 2'MOE gapmer

interstitial space (IS) IS + myofibers
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• Data show reduced DUX 4 expression in vivo and important muscle improvements 
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Figure S14. LNA gapmer 4 improved muscle function as measured by grip strength after 
10 weeks of systemic delivery. Grip strength of the hind limbs of the FLExDUX4 mice (mild 
model) was measured after the mice were treated for 10 weeks. The treatment restored the 
muscle strength to the level of wildtype littermates. n=5, *p<0.05.  
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Conclusions and Future Work

• LNA and 2’-MOE gapmers effectively 
knock down DUX4

• Carrier-based delivery of the gapmers 
are being tested
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